
2022년 부처 협업형 인재양성 사업 (한국산업기술진흥원)

반도체공학 융합전공 설명회

2024. 1. 16

반도체전공트랙사업단

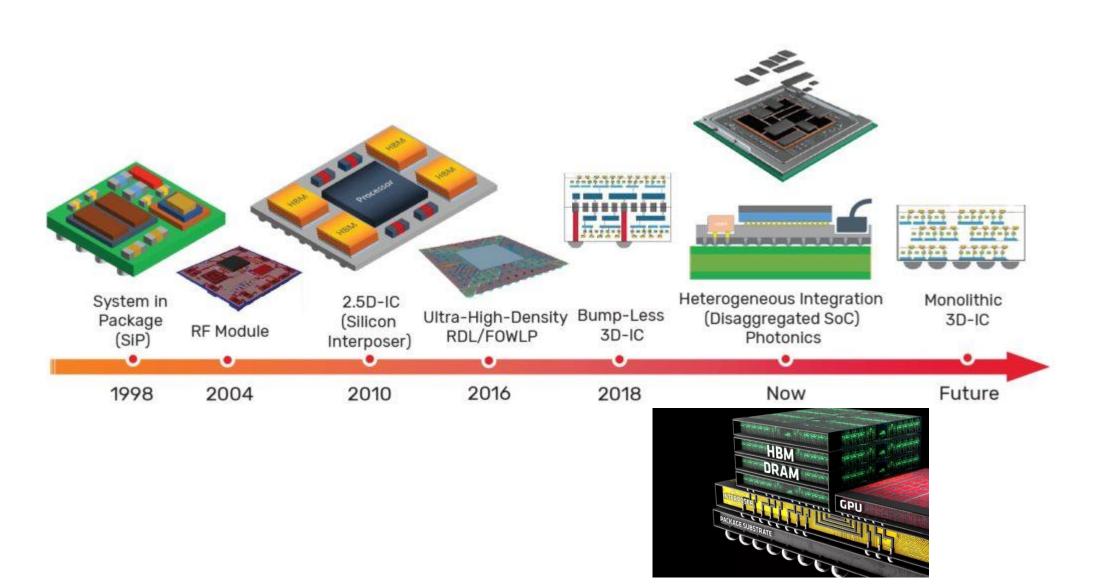
정부 정책

- 반도체 산업은 우리 국가 경제 발전에 견인차 역할을 해온 주력 산업으로 AI, IoT 등에 필요한 핵심 기반 산업
- ✓ 2021년 수출액 1093억 달러로 국가 전체 수출액의 20% 이상이며 향후 시장 규모 계속 확대될 전망
- K-반도체 전략 (2021.5.12.): "2030년 세계 최고의 반도체 공급망 구축 " 추진
- ✓ 2027년까지 반도체 소재·공정·장비 및 시스템반도체(특히 소자·설계) 분야에서 매년15,583명의 인력부족 예상

지역 환경

- 인천광역시 산업 수출액 중 반도체 분야: 2020년 기준 8.3조원, 10대 품목 중 19% 비중 차지
- 인천광역시 수출품목 1위 산업: 반도체, 특히 반도체 후공정으로 특화된 산업 생태계를 구성
- 후공정 세계 2,3위 기업과 장비 분야 중소기업 등 약 1,300개의 반도체관련 기업이 인천광역시 내에 소재

인하대 중·장기 발전계획



- 2030 수도권 서부벨트 신성장산업 육성을 주도하는 학 · 연 · 산 · 관 플랫폼 구축
- 8대 전략산업과 5대 핵심분야에 반도체 선정 → "글로벌 경쟁력을 갖춘 창조형 반도체 후공정 생태계 조성"
- 반도체 주력학과(신소재공학, 화학공학)와 기반학과(전기 · 전자공학, 정보통신공학, 고분자공학) 선정 및 전략수립

Advanced Packaging

반도체 소자의 고집적화 & 다기능화(Logic + Memory) ☞ 2.5D, 3D Packaging(이종집적소자, 하이브리드본딩)

VISION

글로벌 산업 경쟁력 확보

시스템 반도체 전 - 후공정 통합형 인재 양성

핵심목표

산업 수요기반 융합 교육과정

산학협력 연계 프로그램

현장실무형 교육 인프라

전략

- 융합전공 및 세부트랙 신설
- 산업계 교육 수요조사
- 기업 맞춤형 교육과정 개발
- 다양한 전공지식의 융·복합
- 전·후공정 통합 교육

- 컨소시엄 산학협력 체계 구축
- 산업수요 맞춤형 교육 컨텐츠
- 기업 실무형 현장실습
- 기업 문제해결 산학프로젝트
- 인력양성의 고용 연계

- 산업체 경력 교수진 확보
- 산업체 현장전문가 지도
- 반도체 팹 활용 실무 교육
- 실습 시설 및 장비 보강
- 표준분석연구원 협업

융합전공 참여 학과 및 교수진

①소자및소재·공정·장비 트랙

▶ 물리학과, 신소재공학과, 화학공학과, 고분자공학과, 기계공학과

②집적회로 및 시스템설계 트랙

▶ 전자공학과, 정보통신공학과, 전기공학과

융합전공운영

- ▶ 전공 주임교수: 최리노교수(신소재공학과)
- ▶▶ 교육운영위원회: 8개 학과 대표 교수
 - 교육과정 및 융합전공 규정 협의
- ▶▶ 주관 부서 : 3D나노융합소자연구센터
- 교육 및 진로: 전승준 (032-860-8410, sjjeon@inha.ac.kr)
- 학사 행정: 강경미 (032-860-9526, gyeongmi2022@inha.ac.kr)
- 예산 행정: 정제연 (032-860-9525, jjy@inha.ac.kr)
- 사무실:5서254호
- ▶▶ 융합전공 홈페이지: http://see.inha.ac.kr

 소자및 소재·공정·장비 트랙						
성명	직위	전공				
정지원	교수	화학공학				
신내철	교수	화학공학				
이진균	교수	고분자공학				
김상원	부교수	고분자공학				
최우혁	부교수	고분자공학				
권용구	교수	고분자공학				
진형준	교수	고분자공학				
김희중	조교수	고분자공학				
김주형	교수	기계공학				
최리노	교수	신소재공학				
이정환	조교수	신소재공학				
전승준	연구교수	3D소자연구센터				
박노활	연구교수	3D소자연구센터				
김택수	연구교수	3D소자연구센터				
전정식	겸임교수	(전) 삼성전자				
류한열	교수	물리학				
이근섭	교수	물리학				
정종훈	교수	물리학				
허남정	교수	물리학				
이민백	부교수	물리학				
이규태	조교수	물리학				
유석재	조교수	물리학				

집적회로 및 시스템 설계 트랙							
성명	직위	전공					
김태인	조교수	전기공학					
 강진구	교수	전자공학					
이영택	부교수	전자공학					
김형진	조교수	전자공학					
이한호	교수	정보통신공학					
이채은	교수	정보통신공학					
서영교	조교수	정보통신공학					

융합전공 개요

• 학위명 : 반도체공학 (Semiconductor Engineering)

• 학위 과정: ①융합전공(39학점), ②부전공(21학점)

• 세부 전공트랙

- 사업단에서 전공트랙 이수증 발급

① 소자 및 소재·공정·장비 트랙

② 집적회로 및 시스템 설계 트랙

모집 정원: 50명/년

• **모집 대상** : 모든 학과

교육 목표

- 전기, 전자, 정보통신, 화학, 물리학 기계공학 및 재료공학 등 관련 분야에서 반도체소자 제품개발에 필요한 기본적인 제반사항을 교육하고, 이를 바탕으로 혁신 성장에 필요한 반도체 설계, 소자, 공정, 재료 및 장비에 대한 학문분야를 융합적으로 교육한다.
- 최종적으로 국내의 반도체 산업 및 전자소자 산업계는 물론이고 관련 과학기술계 및 학계에 이바지할 수 있는 반도체공학 분야의 우수한 전문인력을 양성한다.
- ▶▶ 모집 기간 : 2023. 1. 22(월) ~ 1. 23(화)
- ▶▶ 모집 대상
- 5~6차 학기 진입생(25년 8월 ~ 26년 2월 졸업예정자) / 정원 50명
- 7차 학기 진입생 추가 모집(25년 2월 졸업예정자) / 정원 10명
- 학점 평균 3.0 이상
- ▶▶ 신청 방법: 인하포털에서 반도체공학 융합전공 신청 [학사관리팀 공지] 2024학년도 1학기 다중전공(복수・연계・융합・부전공) 신청
- *붙임파일 [반도체융합전공,부전공 세부전공 신청서_학번_이름] 파일 필수 제출

제출처: gyeongmi2022@inha.ac.kr

제출기한: 1월22일(월)~23일(화) 15:00시까지

▶▶ 선발 방법:서류 심사 후 포털 공지(혹은 문자 발송)

융합전공 이수체계

7.8	전공명	반도체공학	HJ 🗇	
구분	학위과정	①부전공과정	②학위과정	비고
	트랙필수 (총 5과목)	3과목 이상 이수 (직무훈련 포함)	5과목 이상 이수 (직무훈련 포함)	1. 융합전공신
융합전공	기초공통	자율 이수	자율 이수	청전이수교과 목도인정
지정 교과목	전공기초	12학점 이상 이수	21학점 이상 이수	2. 전공트랙간 교치수강인정
<u> </u>	전공심화	12 4 名 4 名 4 千	21학점 이경 이구	
	최소이수학점	21학점	39학점	
학위	융합전공	졸업증명서 內 부전공명 기재	주전공과 융합전공 2개 학위 수여(복수)	

▶▶ 직무훈련 3학점 필수: 산학프로젝트(3학점) 혹은 현장실습(3학점)

취시기비	소속학과		융합전공				
학위구분	주전공	기초공통	전공기초	전공심화	직무훈련	합계	필수
부전공	48~54	6	6	6	3	21	3과목
학위과정	39~42	12	12	12	3	39	5과목

▶▶ 융합전공 학생에게 주전공 학점 감소 혜택이 있으며 **학점 규정은 학과별로 상이함**

이수 체계

- ▶ 융합전공 지정 교과목에서 주전공과 중복되지 않는 별도의 교과목으로 21학점/39학점을 추가로 이수.
- ☞ 참여학생 소속학과의 주전공 학점(교과목)과 융합전공 학점 (교과목)의 중복인정 불가.
- ☞ 원소속학과에서 전필로 지정된 교과목은 융합전공 학점으로 인정되지 않음.

직무 훈련

- ▶ 산학프로젝트: 참여 교수 연구실에 배정되어 기업현장문 제 해결을 위한 팀프로젝트 형식으로 진행.(3학점, 동계계절 학기)
- ▶ 현장실습: 본교 현장실습센터 규정대로 반도체 연관 실습 프로그램을 이수하여 학점을 인정 받으면 융합전공 학점으로 인정.(최대 6학점, 융합전공 학수번호 필수)
- ▶ 주의: 부전공 과정은 현장실습 학점 인정 불가

연구 역량

▶ 학부연구생: 참여 교수 연구실에 배정되어 반도체 연구역 량 배양 및 대학원 진학 연계. (최대 3학점, 융합전공 학수번호 필수)

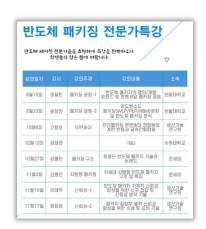
응합전공 교육과정

구분	소자	및 소재·공정·장비 트	트랙	집격	덕회로 및 시스템 설 계	트랙		
직무훈련	반도체 산학프로젝트 / 현장실습							
	반도체응용광학	전자세라믹스	나노공학	센서재료와소자	시스템반도체설계	혼성신호집적회로설계		
전공심화	반도체패키지	무기전자재료	첨단반도체소자물리	메모리반도체기술	유기전자공학	아날로그회로설계		
	전자패키지재료	나노물성및합성	고체물리학	나노집적반도체소자	MEMS 개요	오퍼레이팅시스템		
				alalalala.	THE LOCAL PROPERTY OF THE PARTY			
	박막공학	디스플레이공학	반도체공정	광집적회로	전자회로2	마이크로프로세서응용		
전공기초	전자재료물성	반도체공정장비실습	반도체소자	광자공학기초	전자회로1	디지털집적회로설계		
	전자물리학및실습	양자물리학1/2	전력용반도체소자	회로이론2	컴퓨터구조론	디지털시스템설계		
기초공통	전(기)자기학2 반도체개론 전(기)자기학1 디지털논리회로		회로이론1 전자기초디지털논리		통신기초설계실습2 통신기초설계실습1			
필수 교과목 (5과목)	소자 및 소재・공정・장비 트랙 전(기)자기학1 반도체개론 반도체소자 반도체공정 산학프로젝트/현장실습 집적회로 및 시스템 설계 트랙 전(기)자기학1 회로이론(1) 전자회로1 반도체소자 산학프로젝트/현장실습							

융합전공 자체 개설 교과목 (SEE0000)

분야	과목명	학점	교과목개요	수강 대상
기국 서라	반도체개론	3	• 반도체 역사, 발전 과정, 다양한 산업과 미래기술 소개 : 가이드라인을 제공하는 입문교육	3학년1학기
기초역량	전기자기학	3	• 벡터해석, 정전기학, 전위, 정전기장, 정자기학, 자기장, 전기역학등 기초이론 학습	전기전자비전공자
	반도체 공정장비실습	3	• 클린룸 장비를 활용한 공정, 장비 실습 및 MOS 소자 제작, 평가에 의한 현장 실무역량 향상	3학년2학기~4학년1학기
	반도체 산학프로젝트	3	• 기업 수요 기반의 현장애로기술을 과제로 진행하는 문제해결형 PBL 수업(팀프로젝트)	3학년 동계 계절학기
실무역량	반도체 학부연구생	1~3	• 지도교수 연구실에 참여하여 반도체 관련 연구역량 배양 및 대학원 진학 연계	3~4학년
	반도체 현장실습	3~6	• 직무능력 향상 및 취업역량 제고를 위한 학기제, 방학제 표준현장실습 프로그램(IPP, 일학습병행 포함)	3~4학년
	메모리반도체기술	3	• SK하이닉스에서 제공하는 On-line 현장강의 사전학습과 인하대 Off-line 실무강의를 결합한 플립드러닝 수업	3,4학년2학기
지원어라	반도체 패키지	3	• 반도체 후공정에 대한기초 학습 및 다양한분야 전문가 초청 강연(WLP, HBM, 인공지능 등)	3,4학년 2학기
심화역량	반도체 응용광학	3	• 기하광학, 물리광학, 레이저광학에 대한 기본적인 이해를 바탕으로 반도체산업에 응용되는 주요 내용 학습	3,4학년2학기

반도체개론


공정장비실습

산학프로젝트

메모리반도체기술

반도체 패키지

융합전공 교과목 개요

|융합전공의 소재·공정·장비 트랙 교과목

구분	학수번호	교과목명	학 점	교육내용	개설학과	대체인정교과목
	해당학과	디스플레이공학	3	정보디스플레이 디바이스의 개념, 구동 원리, 제조법 등에대한 내용을 강의한다. (TFT-LCD 디스플레이,AMOLED. 박막트랜지스터의 동작원리 및 특성)	신소재공학과	디스플레이공학 (MSE3010), 디스플레이공학(ICE3019), 전자디스플레이 (ECE4423), 전자디스플레이 (EEE3206), 정보전자디스플레이 (CHE4310)
	SEE3203	메모리반도체기술	3	SK하이닉스의 소자, 공정, 설계 전문가들이 반도체소자 개발 경험과 노하우를 바탕으로 메모리 반도체에 필요한 기술을 공유하는 실무형교육과정으로 SK하이닉스 반도체 커리큘럼 동영상 원격 강의를 활용하며 산업현장에서의 생생한 기술 상용화 과정 및 최신 동항을이해할수 있음.	반도체융합전공	
	MSE3024	박막공학	3	박막제조 원리 및 공정에 대해 배우고. 박막제조 장비 및 진공시스템, 박막재료분석 기법을 소개한다.	신소재공학과	

- A. 융합전공 개설 교과목(SEE0000)
- B. 참여학과 개설 교과목(MSE0000 등)
- C. 대체인정 교과목(학수번호 해당학과로 표시) : 교육 내용이 유사한 학과별 교과목은 대체인정 그룹으로 지정되 며, 동일한 그룹 내 1개 교과목만 융합전공 학점으로 인정됨.
- ▶ 주의 사항
- : 원 소속학과의 전필에 해당하는 교과목은 주전공 학점으로 합산 하여야 하며, 융합전공 학점으로 합산하는 것은 불가능함.
- 예) 전자공학과 학생이 전기자기학1(ECE2243), 회로이론 1(ECE2240), 전자회로1(ECE2250)을 수강한 경우 ☞ 설계 트랙의 필수 교과목 3과목 이수 자격은 인정 되지만, 원소 속학과의 전필에 해당하므로 융합전공 학점으로 합산되지 않음.
- 예) 신소재공학과 학생이 전기자기학1(ECE2243) 을 수강한 경우 ☞ 트랙의 필수 교과목 1과목을 이수 자격이 인정되며, 동시에 융 합전공 학점으로 합산하는 것이 가능함.

필수 교과목 (15학점)

소자 및 소재 · 공정 · 장비 트랙

집적회로 및 시스템 설계 트랙

전(기)자기학1 🕨 반도체개론 🏓 반도체소자 🕨 반도체공정 🕨 산학프로젝트/현장실습

전(기)자기학1 회로이론(1) 전자회로1 반도체소자 산학프로젝트/현장실습

응합전공 혜택

🕞 융복합 교육과정 지원	- 8개 학과에서 반도체 전문가가 참여하므로 다양한 학문 분야를 접할수 있는 기회 제공 - 반도체 산업 현장 전문가의 실무 역량 교육 및 멘토링 제공
逾 실습 및 실무교육 지원	- 융합전공 운영을 위한 반도체 실습교육 공간 및 장비 지원(3D나노융합소자 연구센터 클린룸) - 반도체 산업 수요기반의 산학프로젝트 실무경험 제공
◎ 융합전공 교육비 지원	- 참여 학생에게 융합전공에서 제공하는 장학금 지원(내규에 따라 차등지급) - 수강생 전원 융합전공에서 개설하는 계절학기 수강료 무료 혜택 지원 - 외부에서 진행하는 유료 단기강좌 교육비 지원
융합전공 설계의 다양성 제공	- 소자 및 소재·공정·장비 트랙과 설계 트랙을 동시에 운영하여 다양한 진로선택 기회 부여 - 융합전공 학위제도(39학점)와 부전공 제도(21학점)를 동시에 운영하여 다양한 선택 기회 부여

교육 인프라(공간) 확보 현황

반도체전공트랙 실습 센터

PEALD Aligner Photo 38 38 4 4 9 1 30 Aligner Photo 38 4 9 1 30 Aligner Photo 48 4 9 Aligner Photo 48 4 9 Aligner Photo 48 4 9 Aligner Photo 48 4

3D나노융합소자연구센터클린룸

2019년

270m²

- 센터 설립

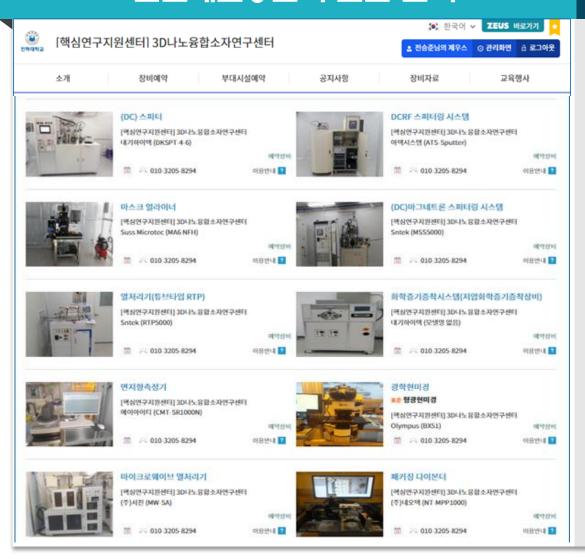
- FAB 클린룸

[팀프로젝트교육실]

[소자실습실]

[설계실습실]

공간 확보현황


- 전·후공정 실습실(270m²): 3D나노융합소자연구센터의 반도체 클 린룸(Class 100~1000)을 사업단 전용 실습센터로 활용중.
- 소자·설계 실습실(386m²): Probestation 등 소자 특성 평가를 위한 계측장비와 회로설계 및 시뮬레이션을 위한 컴퓨터 및 각 종 Software 보유.
- 신규 조성 공간(120m²): 대학에서 신규 배정한 공간을 활용하여 팀프로젝트 교육과 산학프로젝트 과제 운영을 위한 PBL 교육실 과 사무 공간인 행정실 조성

공간명	위치	수량	면적(m ²)	구분	용도
강의실	5서252 외	32	3587	기존	참여학과 강의실
반도체 클린룸	2북110	1	270	기존	전공정 장비교육
소자 실습실	5북334	1	60	기존	소자 측정 및 평가
설계 실습실	하-426 외	3	326	기존	설계 프로그램 교육
PBL 교육실	2북106	1	72	신규	팀프로젝트 교육
행정실	5서254	1	60	신규	행정사무 공간

교육 인프라(장비) 확보 현황

반도체전공트랙 실습 센터

장비 확보현황

- 전·후공정 실습장비(21점): 교육부 핵심연구지원센터로 지정된 3D나노융합소자연구센터가 보유한 반도체 8대공정 장비(Photo aligner, ICP-RIE, 다이본더 등)를 활용한 실습교육과 소자 제작 및 평가 교육에 활용중.
- 소자·설계 실습장비: Probestation, Parameter analyzer, C-V meter 등 소자 특성 평가 장비와 설계 실습을 위한 서버, 컴퓨터(97점), 및 Matlab 등 각종 Software 보유.
- 신규 투자: 스핀코터(7,205천원), 와이어본더(40,700천원), Organic용 Probestation(10,582천원), 설계용서버(27,500천원), Cadence IC Design Package 설계용 Software (48,800천원/년) 등

장소	실명	Software 명	모델번호	금액(천원)
		S/W:TOAD For SQL Server Pro		1,023
ธ์⊦-422	VON NEUMANN LAB	S/W:TOAD For Oracle Pro	Quest Software	1,848
07-422	AOIM IMEOIMIMININ EWD	S/W:Anypa-IMT 2000	Anypa-IMT2000	8,000
		S/W:SQL 서버 스탠다드 2008 R2	SQL Std 2008 R2	3,500
		S/W:Creative Suite CS2 CLP LIC(40User)	54017290XD	10,369
		S/W:매틀랩(10User)	MatlabR14SP3	13,391
के⊦-424	FOURIER LAB	S/W:CS3 Production Premium(38User)	54021797PU	16,908
		S/W:IPP 라이센스(2EA)	IPP	1,650
		S/W:Academic Site License	940024-01	2,080
		S/W:Matlab(28User)	Matlab	13,992
र्च⊦-426	MAXWELL LAB	S/W:RFID 신호분석 틀	RFID 신호분석 틀	1,188
OF-420	IMIMAWELL LAD	S/W 소프트웨어(오아 캐드)	ORCAD	5,495
		S/W 소프트웨어(ORCAD)	ORCAD	1,500

산업 현장 학습(4시간 이상)

차세대 리소그래피 단기 교육 (ASML, 삼성전자, SK하이닉스 강사)

자세대 리소그래피 단기교육강좌 2023년 6월 26일(월) - 6월 30일(금) / 대면 비대면 동시진행 사건통목기간 5월 15일(월) - 6월 9일(금)|16일까지 연점| 경소 부산 센탈프리미아호텔 시무국 email: contact@ngl.or.k/

Smart Semiconductor Academy (삼성전자, SK하이닉스 강사)

Key strengths of this program

기업체 탐방(에드워드코리아)

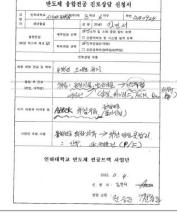
한국반도체학술대회(2024.1월 예정)

산업 현장 실습(1주 이상)

실습 기관	교육 과정	인원	기간
대구경북과학기술원	인턴 프로그램	1	2022. 12월~1월
엘에이티	반도체장비 제조현장 실습	8	2023. 1월
삼성전자	인턴 프로그램	1	2023. 7월~8월
스태츠칩팩코리아	IPP 장기현장실습	4	2023. 9월~12월
한국과학기술연구원	표준현장실습학기제	2	2023. 6월~12월
한국나노기술원	Micro LED 소자기술 실습교육	1	2023. 9월

- 협약기업에서 지원하는 특화 교육프로그램
- 대학 현장실습센터에서 지원하는 학기제, 방학제 표준현장실습 프로그램(IPP 장기현장실습 포함)
- 기타 기업체, 연구소의 인턴프로그램 및 장기실습교육

취업지원 프로그램


진로 설계(전문가 특강, 1:1 멘토링)

학사지도,진로지도 멘토링

취업 지원(기업, 직무, 채용 설명회)

직무소개(한국반도체산업협회)

기업설명회(앰코코리아)

채용박람회(한국반도체산업협회)

